Décomposition de Dunford

Notions utilisées: Polynômes d'endomorphismes, Lemme des noyaux et théorème de Bézout

Motivations

La décomposition de Dunford a de nombreuses applications, à commencer par les calculs d'exponentielles de matrices. C'est en quelque sorte une version améliorée de la trigonalisation (comme la réduction de Jordan).

Lemme 1. Soit $f \in \mathcal{L}(E)$ et $F = b \prod_{i=1}^{s} M_i^{a_i} \in \mathbb{K}[X]$ (DFI) annulant f. On note $N_i := \text{Ker}(M_i^{a_i}(f))$. Alors $E = N_1 \oplus \cdots \oplus N_s$ et le projecteur p_i sur N_i parallèlement au reste est un polynôme en f.

Preuve. Pour $E = N_1 \oplus \cdots \oplus N_s$, c'est le lemme des noyaux.

Pour le reste, l'idée est de construire les projecteurs à l'aide d'une relation de Bézout.

Etape 1 : Construction des p_i comme des polynômes en f.

On pose $Q_i = \prod_{i \neq j} M_i^{a_i}$. Ces Q_i sont premiers entre eux (dans leur ensemble), donc par le théorème de Bézout, il existe des U_i tels que

$$\sum U_i Q_i = 1.$$

En particulier en appliquant f, $\sum U_i Q_i(f) = f$. On est amené à poser $p_i = U_i Q_i(f)$. On a $\sum p_i = id_E$.

Etape 2 : Montrer que ce sont des projecteurs sur N_i .

On a $\forall i \neq j, p_i \circ p_j = 0$ car Q_iQ_j annule f ssi $i \neq j$. Donc de la relation de Bézout on déduit en composant par p_i que

$$p_i = \sum p_i \circ p_j = p_i^2$$

d'où p_i projecteur.

Ensuite, on montre $\text{Im}(p_i) = N_i$ par double inclusion.

- Si $y=p_i(x)$ alors pour $j\neq i,$ $M_j^{a_j}(f)(y)=M_j^{a_j}(f)(p_i(x))=F(f)(x)=0$ d'où $y\in N_i.$
- Si $y \in N_i$, i.e $M_j^{a_j}(y) = 0$, alors puisque $\sum p_i = id_E$, on a $y = \sum p_i(y) = p_i(y)$ et donc $y \in \text{Im}(p_i)$.

Remarque 2. Méthode 2 : montrer que $Ker(p_i - id_E) = N_i$, ce qui peut se faire par équivalence.

Etape 3: Montrer $Ker(p_i) = \bigoplus_{j \neq i} N_j$.

Pour $j \neq i$ on a $N_j \subset \operatorname{Ker}(p_i)$ car $p_i(x) = U_i(f) \circ Q_i(f)(x) = 0$ pour tout $x \in N_j$ car $M_j^{a_j}$ divise Q_i . Donc $\bigoplus N_j \subset \operatorname{Ker}(p_i).$

Réciproquement, si $p_i(x)=0$ alors $x=\sum x_k$ et $x_i=0$ en appliquant p_i , d'où l'inclusion réciproque. \square

Théorème 3. Soit $f \in \mathcal{L}(E)$ telle que χ_f est scindé sur \mathbb{K} . Alors il existe un unique couple $(d, n) \in \mathbb{K}[f]^2$ tels que d soit diagonalisable, n nilpotente et f = d + n.

Preuve. Etape 1: Existence.

On note $\chi_f = \prod_{i=1}^p (X - \lambda_i)^{a_i}$. On pose alors comme précédemment avec $N_i = \text{Ker}((f - \lambda_i i d_E)^{a_i})$ les

projecteurs p_i sur N_i . On a $p_i \in \mathbb{K}[f]$. On pose alors $d := \sum_{i=1}^{p}$

 $lambda_ip_i$. Construit de cette manière, d est diagonalisable car on peut construire sur chaque sous-espace N_i une base propre pour p_i , puis regrouper en une base \mathcal{B} diagonalisante pour tous les p_i . Dans cette base, d correspond donc bien à la matrice D diagonale contenant les valeurs propres comptées avec multiplicité.

On pose alors $n = f - d = \sum_{i=1}^{p} (p_i \circ f) - \sum_{i=1}^{p} \lambda_i p_i = (f - \lambda_i i d_E) p_i$. On a, puisque $p_i \circ p_j = \delta_{i,j}$:

$$n^q = \sum_{i=1}^p (f - \lambda_i i d_E)^q p_i.$$

d'où, puisque tout $(f - \lambda_i id_E)$ est nilpotent, n est nilpotent.

Etape 2 : Unicité.

Si f = d + n = d' + n' alors d - d' = n - n' est diagonalisable (car d et d' commutent comme polynômes en f donc sont codiagonalisables) et nilpotent donc nul.

Références

[GouAl] Xavier Gourdon, Algèbre, 2e édition