Décompositions LU et de Cholesky

Notions utilisées: Pivot de Gauss, matrices symétriques définies positives.

Motivations

Pour résoudre successivement des systèmes linéaires $Ax_i = b_i$ avec une même matrice A, il peut être judicieux de factoriser via LU ou Cholesky pour n'avoir que des systèmes triangulaires à résoudre.

Théorème 1 (Décomposition LU). Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que toutes ses matrices extraites $A^{(k)}$ soient inversibles. Alors il existe un unique couple $(L,U) \in \mathcal{M}_n(\mathbb{K})$ tel que A = LU avec U triangulaire supérieure et L triangulaire inférieure avec uniquement des 1 sur la diagonale.

Preuve. Etape 1 : Pivot de Gauss et heuristique.

On considère les matrices-produits E_i des transvections de la réduction de Gauss dans le cas où il n'y a pas de transposition à faire (c'est à dire où tous les pivots sont positifs). On a concrètement

$$E_{k} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ 0 & -l_{k+1,k} & \ddots & \ddots & \vdots \\ 0 & \vdots & 0 & \ddots & 0 \\ 0 & -l_{n,k} & 0 & \dots & 1 \end{pmatrix} = I_{n} + \sum_{i=k+1}^{n} -l_{i,k} E_{i,k}$$

où $l_{i,k} := \frac{a_{i,k}^k}{a_{k,k}^k}$ et les $(a_{i,j}^k)$ sont les coefficients de la matrice $A_k := (E_{k-1} \dots E_1)A$. C'est la matrice obtenue à l'étape $k \in \llbracket 1, n-1 \rrbracket$ de l'algorithme de réduction de Gauss de A lorsqu'il n'y a aucun pivot à changer. Montrons par récurrence qu'il n'y a en effet aucun pivot à changer, c'est à dire que $\forall k \in \llbracket 1, k \rrbracket$, $a_{k,k} \neq 0$, c'est à dire encore que A_k est bien définie pour tout $k \in \llbracket 1, n-1 \rrbracket$.

Etape 2 : Montrer que les pivots $a_{k,k}$ sont non nuls.

On note $\Delta_k := \det(A^{(k)})$. Tout d'abord, pour k = 1, on remarque que $a_{1,1} \neq 0$ par hypothèse sur le mineur $\Delta_1 = a_{1,1}$.

Supposons maintenant que, pour un certain $n-1 \ge k \ge 1, \forall j \in [1, k-1], a_{j,j} \ne 0$. La matrice E_j est

donc bien définie pour $j \leq k-1$, et donc $A_k = (E_{k-1} \dots E_1)A$ est également bien définie. On a alors

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ * & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ * & \dots & & * & 1 \end{pmatrix} \times \begin{pmatrix} a_{1,1} & \dots & a_{1,k} & * & * \\ \vdots & & \vdots & \vdots & \vdots \\ a_{k,1} & \dots & a_{k,k} & * & * \\ * & \dots & \dots & * \end{pmatrix} = \begin{pmatrix} a_{1,1}^1 & \dots & a_{1,k}^1 & * & * \\ * & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & a_{k,k}^k & * & * \\ * & \dots & \dots & * \\ * & \dots & \dots & * \end{pmatrix}$$

et donc $\Delta_k = a_{1,1}^1 a_{2,2}^2 \dots a_{k,k}^k \neq 0$ d'où $a_{k,k}^k \neq 0$. Ainsi, E_k est bien définie. Cela conclut la récurrence. On conclut l'étape 2 en posant $L := A_n^{-1} = (E_{n-1} \dots E_1)^{-1}$ et $U := L^{-1}A$.

Etape 3: unicité.

En écrivant proprement le raisonnement d'unicité, on se rend compte que le problème se ramène a étudier les matrices qui sont a la fois triangulaires supérieures et triangulaires inférieures, c'est à dire diagonales. Puisque toutes les matrices L que l'on peut considérer n'ont que des 1 sur la diagonale, on en déduit l'unicité.

Théorème 2 (Décomposition de Cholesky). Soit $A \in \mathscr{S}_n^{++}(\mathbb{R})$. Alors il existe une unique matrice $B \in T_n^s(\mathbb{R})$ telle que $A = B^t B$ et $B_{i,i} > 0$ pour tout i.

Preuve. Etape 1: existence.

On écrit A = LU. C'est légitime, car on remarque que les $A^{(k)}$ sont symétriques définies posives : si $x \in \mathbb{R}^k$, et $\tilde{x} := (x_1, \dots, x_k, 0 \dots, 0) \in \mathbb{R}^n$ alors $\langle A^{(k)} x, x \rangle = \langle A\tilde{x}, \tilde{x} \rangle \geq 0$, et est nul ssi $\tilde{x} = 0$ i.e x = 0.

De plus, $u_{i,i} > 0$ car $\forall k \in [1, n]$, $\Delta_k = \prod_{1}^k u_{i,i} > 0$ car $A^{(k)} \in \mathscr{S}_n^{++}(\mathbb{R})$. On peut donc considérer $D = diag(\sqrt{u_{i,i}})$ et poser B = LD, C = DU. On a A = BC et A symétrique donc $BC = C^t B$ ou encore triangulaire inférieure $= C(t^t B)^{-1} = B^{-1t}C =$ triangulaire supérieure et les coefficients diagonaux sont des 1. Comme précédemment on en déduit $C = t^t B$.

Etape 2: unicité.

On utilise l'unicité de LU. On a en effet, avec $D = diag(b_{i,i})$, $A = BD^{-1} \times D^t B = LU$ et donc par unicité si on a $A = B_2{}^t B_2$ alors $BD^{-1} = B_2 D_2^{-1}$ et $D^t B = D_2{}^t B_2$. L'égalité sur les coefficients diagonaux donne $b_{i,i}^2 = (b_2)_{i,i}^2$ et donc par positivité $D = D_2$. On en déduit $B = B_2$.

Références

[1] P.G. Ciarlet Introduction à l'analyse numérique matricielle et à l'optimisation, (1998) Masson