Colles 2021-2022 S12 - Familles sommables

Théorème 1 (Sommation par paquets)

 $(a_{p,q})_{(p,q)\in\mathbb{N}^2}\in\mathbb{C}^{\mathbb{N}^2}$ est sommable ssi

- 1. $\forall p \in \mathbb{N}, (a_{p,q})_{q \in \mathbb{N}}$ est un terme général de série absolument convergente.
- 2. La série de terme général $\sum_{q=0}^{+\infty} a_{p,q}$ est absolument convergente.

Le cas échéant, $\sum_{q=0}^{+\infty} \sum_{p=0}^{+\infty} a_{p,q} = \sum_{p=0}^{+\infty} \sum_{q=0}^{+\infty} a_{p,q}$

1 Questions de cours

Question de cours 1 (**)

Montrer que $[0,1] \subset \mathbb{R}$ n'est pas dénombrable.

Solution

Diagonale de Cantor. Ne pas oublier de poser un indice différent de chaque décimale diagonale $a_n^{(n)}$.

Question de cours 2

Montrer qu'un produit cartésien fini d'ensembles dénombrables est dénombrable.

Solution]

On prend coordonnées par coordonnées. Il faut éventuellement re-démontrer par récurrence que $\mathbb{N}^n \simeq \mathbb{N}$.

Question de cours 3

Montrer qu'une union d'un nombre au plus dénombrable d'ensemble au plus dénombrables est au plus dénombrable.

Solution

On considère une telle réunion $\bigcup_{i \in I} A_i$, avec $I \leq \mathbb{N}$ et $A_i \leq \mathbb{N}$. On considère des surjections $\varphi_i : \mathbb{N} \to A_i$ et on pose

$$\varphi:(i,n)\in I\times\mathbb{N}\mapsto\varphi_i(n).$$

On a φ surjective : pour tout $x \in \bigcup_{i \in I} A_i$, il existe $j \in I$ tel que $x \in A_j$ et donc par surjectivité de φ_j , il existe

 $n \in \mathbb{N}$ tel que $x = \varphi_j(n) \in \varphi(I \times \mathbb{N})$. Comme $I \times \mathbb{N}$ est dénombrable on en déduit que $\bigcup_{i \in I} A_i$ est au plus dénombrable.

2 Exercices

Exercice 1

Soit E un ensemble non vide. On veut montrer que $E \not\simeq \mathcal{P}(E)$. On suppose par l'absurde que $E \simeq \mathcal{P}(E)$ et on se donne une bijection $\varphi: E \to \mathcal{P}(E)$. Trouver une contradiction en considérant $A := \{x \in E, x \not\in \varphi(x)\}$.

Solution

Cette partie $A = \varphi(y)$ (légitime car A partie de E) vérifie :

- 1. Si $y \in A$ alors $y \notin \varphi(y) = A$, ce qui n'est pas possible
- 2. Si $y \notin A$ alors $y \in \varphi(y) = A$, ce qui n'est pas possible non plus.

Ainsi, on aboutit à une contradiction, et donc $E \not\simeq \mathcal{P}(E)$.

Exercice 2

Montrer que l'ensemble des parties finies de \mathbb{N} est dénombrable.

Solution

Soit $P_f(\mathbb{N})$ l'ensemble des parties finies de \mathbb{N} . On a $P_f(\mathbb{N}) = \bigcup_{n \in \mathbb{N}} P_n(\mathbb{N})$ où $P_n(\mathbb{N})$ désigne les parties finies de

 \mathbb{N} à au plus n éléments. Pour tout $n \in \mathbb{N}$, $P_n(\mathbb{N})$ est au plus dénombrable via $\phi_n : (a_1, \dots, a_n) \in \mathbb{N}^n \mapsto A = \{x_1, \dots, x_n\} \in P_n(\mathbb{N})$ qui est bien surjective (car on peut écrire toute partie à $\leq n$ éléments comme une partie de la forme $\{x_1, \dots, x_n\}$). Ainsi $P_f(\mathbb{N})$ est dénombrable.

Exercice 3

Soient a,b>0. Montrer que $(e_{b,q\in\mathbb{N}}^{-ap-bq})$ est sommable. Calculer sa somme.

Exercice 4

On prend comme suite J_n croissante de parties finies de \mathbb{N}^2 les parties $J_n := \{(p,q) \in \mathbb{N}^2, p \leq n, q \leq n\}$ puis majorer (séries géométriques). On peut aussi appliquer la sommation par paquets sur $I_n := \{(n,q) \in \mathbb{N}^2, q \in [1,n]\}$. On trouve

$$S = \frac{1}{(1 - e^{-a})(1 - e^{-b})}.$$

Exercice 5

On pose, pour x > 1, $\zeta(x) := \sum_{n=1}^{+\infty} \frac{1}{n^x}$.

- 1. En cherchant un équivalent de $\sum_{q=p+1}^{+\infty} \frac{1}{q^{\alpha}}$, trouver les valeurs de α pour lesquelles $\left(\frac{1}{(p+q+1)}\right)_{(p,q)\in\mathbb{N}^2}$ est sommable. Le cas échéant, calculer la somme en fonction de ζ .
- 2. Soit $z \in \mathbb{C}$ de module < 2. Montrer que la famille $\left(\frac{z}{p}\right)_{p \geq 2, n \geq 2}^n$ est sommable.
- 3. Montrer que la série de terme général $\zeta(n)-1$ est convergente, et calculer sa somme en utilisant la première question. On pourra utiliser sans démonstration le développement limité de la série harmonique.

Solution

1. L'équivalent, par comparaison à une intégrale, est $\frac{p^{1-\alpha}}{\alpha-1}$, qui est un terme général de série convergente ssi $\alpha>2$. Le cas échéant, on peut utiliser le théorème de Fubini :

$$\sum_{p=0}^{+\infty} \sum_{q=0}^{+\infty} \frac{1}{(p+q+1)} = \sum_{p=0}^{+\infty} R_p =$$

- 2. On montre que la famille $\left(\frac{z}{p}\right)_{p\geq 2, n\geq 2}^n$ est sommable :
 - (a) Pour tout $p \ge 2$, on a une série géométrique qui converge absolument.
 - (b) La série à variable p vérifie

$$\sum_{n=2}^{+\infty} \frac{|z|^n}{|p|^n} = \frac{|p|}{|p|-|z|} - 1 - \frac{|z|}{|p|} = \dots = \frac{|z|^2}{|p|(|p|-|z|)} \le \frac{|z|^2}{|p|^2 - 2|p|} \sim \frac{|z|^2}{|p|^2}$$

et est donc convergente par critère de Riemann. (si z = 0 on a la série nulle)

3. On a $\zeta(n) - 1 = \sum_{n=2}^{+\infty} \frac{z}{k^n}$ avec z = 1, qui est bien le terme général d'une série convergente d'après ce qui précède. La somme de cette série vaut 1. En effet par théorème de Fubini :

$$\sum_{n=1}^{\infty} \zeta(n) - 1 = \sum_{k=2}^{\infty} \sum_{n=1}^{\infty} \frac{1}{k^n} = \sum_{k=2}^{\infty} \frac{1}{1 - 1/k} - 1 = \sum_{k=2}^{\infty} \frac{k}{k - 1} - 1 = \sum_{k=2}^{\infty} \frac{1}{k - 1} - \frac{1}{k} = 1$$

(somme télescopique).

Exercice 6

Soient a, b > 0. A quelle condition $(a^p b^q)_{p,q \in \mathbb{N}}$ est-elle sommable? Dans les cas de sommabilité, calculer la somme.

Solution

Sommabilité:

- 1. Pour $p \in \mathbb{N}$ fixé, la série de terme général $a^p.(b^q)_{q \in \mathbb{N}}$ est une série géométrique qui converge ssi |b| < 1
- 2. La série à variable p est aussi une série géométrique (à constante multiplicative $\frac{1}{1-b}$ près) et converge ssi |a| < 1.

Somme : $S = \frac{1}{1-a} \frac{1}{1-b}$

Exercice 7

 $\left(\frac{(-1)^p}{q^p}\right)_{p\geq 2, q\geq 2}$ est-elle sommable? Si oui, calculer la somme.

Solution

Sommabilité (donc en valeur absolue) : $\sum_{q=2}^{+\infty}\sum_{p=2}^{+\infty}\frac{1}{q^p}<+\infty \text{ avec somme géométrique}+\text{ somme télescopique}$ obtenue avec le $\frac{q^{-2}}{1-q^{-1}}$. La somme vaut $\frac{1}{2}$.

Exercice 8

Calculer $\sum_{n=0}^{+\infty} \sum_{k=n}^{+\infty} \frac{1}{k!}$

Solution

Sommation par paquets sur $\sum_{k=0}^{+\infty} \sum_{n=0}^{k} \frac{1}{k!}$.