Colles 2021-2022 S14 - Probabilités 2

1 Questions de cours

 ${\cal I}$ désigne un ensemble au plus dénombrable.

Question de cours 1

Enoncé et démonstration du théorème de continuité monotone.

Question de cours 2

Enoncé et démonstration de la formule des probabilités totales.

Question de cours 3

Enoncé et démonstration de la formule des probabilités composées.

Question de cours 4 (Markov)

Enoncer et démontrer l'inégalité de Markov.

Question de cours 5 (LfGN)

Enoncer et démontrer la loi faible des grands nombres

2 Exercices

Exercice 1

Soit $(A_n)_{n\geq 0}$ une suite d'événements indépendants.

1. Montrer que
$$\mathbb{P}\left(\bigcup_{n=0}^{+\infty}A_n\right)=1-\lim_{n\to+\infty}\prod_{k=0}^n\mathbb{P}(\overline{A_k})$$

2. On suppose que
$$\mathbb{P}(A_n) \neq 1$$
. Montrer que $\mathbb{P}\left(\bigcup_{n=0}^{+\infty} A_n\right) = 1$ ssi $\sum_{n} \mathbb{P}(A_n)$ diverge.

3. On suppose $\mathbb{P}(A_n) = \frac{1}{(n+2)^2}$. Calculer $\mathbb{P}\left(\bigcup_{n=0}^{+\infty} A_n\right)$ et en déduire la probabilité qu'un seul des A_n se réalise.

Tableau récapitulatif des lois usuelles

Nom	$X(\Omega)$	$\mathbb{P}(X=k)=\dots$	Espérance	Variance	Fonction génératrice $t \to \dots$
Uniforme $X \hookrightarrow \mathcal{U}(\llbracket 1, n \rrbracket)$	$[\![1,n]\!]$	$\forall k \in \llbracket 1, n \rrbracket, \mathbb{P}(X = k) = \frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\frac{1}{n} \sum_{k=1}^{n} t^k = \frac{t - t^{n+1}}{n(1-t)}$ pour $t \neq 1$
Bernoulli $X \hookrightarrow \mathcal{B}(p)$	{0,1}	$\mathbb{P}(X=0) = 1 - p$ $\mathbb{P}(X=1) = p$	p	p(1-p)	1 - p + pt
Binomiale $X \hookrightarrow \mathcal{B}(n,p)$	$[\![0,n]\!]$	$\forall k \in \llbracket 0, n \rrbracket, \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$	np	np(1-p)	$(1-p+pt)^n$
Géométrique $X \hookrightarrow \mathcal{G}(p)$	№*	$\forall k \in \mathbb{N}^*, \mathbb{P}(X = k) = p(1 - p)^{k - 1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pt}{1 - (1 - p)t}$
Poisson $X \hookrightarrow \mathcal{P}(\lambda)$	M	$\forall k \in \mathbb{N}, \mathbb{P}(X = k) = e^{-\lambda} \frac{p^k}{k!}$	λ	λ	$e^{\lambda(t-1)}$

Exercice 2

On souhaite montrer qu'il n'existe pas de proba \mathbb{P} sur la tribu $(\mathbb{N}, \mathcal{P}(\mathbb{N})$ telle que $\mathbb{P}(A_n) = \frac{1}{n}$ où A_n est l'ensemble des multiples de n. On raisonne par l'absurde.

- 1. Montrer que la famille $(A_p)_{p\in\mathcal{P}}$ est une famille d'événements mutuellement indépendants où $\mathcal{P}=\{p_i,i\in\mathbb{N}\}$ est l'ensemble des nombres premiers.
- 2. Soit $A = \bigcap_{r \geq 1} \bigcup_{i \geq r} A_{p_i} = \limsup_i A_i$. Calculer $\mathbb{P}(A)$.
- 3. En déduire une contradiction. Indication : montrer que $n \in A \iff n$ a une infinité de diviseurs premiers.

Exercice 3

- 1. Montrer que $\mathbb{P}(\{n\}) := \frac{1}{n(n+1)}$ définit bien une probabilité sur \mathbb{N}^* .
- 2. Calculer la probabilité que n soit pair. Indication / Astuce : il faut forcer l'apparition de la série harmonique.

Exercice 4 (Borell-Cantelli 1)

Soit $(A_n)_{n\in\mathbb{N}}$ indépendants. On suppose que $\sum \mathbb{P}(A_n)$ converge. Montrer que $\limsup_n A_n = \bigcap_{n\geq 0} \bigcup_{k\geq n} A_k$ est de probabilité nulle.

Exercice 5 (Borell-Cantelli 2)

Soit $(A_n)_{n\in\mathbb{N}}$ indépendants. On suppose que $\sum \mathbb{P}(A_n)$ diverge. Montrer que $\limsup_n A_n = \bigcap_{n\geq 0} \bigcup_{k\geq n} A_k$ est de probabilité 1.

Application : On lance une pièce truquée (0 d'avoir pile) une infinité de fois. Montrer que l'événement "il apparaît une infinité de fois pile, et ce <math>m fois à la suite" est presque sûr pour tout m.

Exercice 6

Soient $n \geq 2$ et pour $p \in [0, n]$, A_p l'événement "n est divisible par p". (C'est l'ensemble des multiples de p). On considère la probabilité $\mathbb P$ uniforme sur [1, n].

- 1. Calculer $\mathbb{P}(A_n)$. Qu'obtient-on si p divise n?
- 2. Montrer que si p_1, \ldots, p_r sont **les** diviseurs premiers distincts de n alors les A_{p_i} sont mutuellement indépendants.
- 3. Montrer que $\frac{\phi(n)}{n} = \prod_{i=1}^{r} \left(1 \frac{1}{p_i}\right)$

Exercice 7

Montrer qu'une v.a.r.d bornée est L^p pour tout $p < +\infty$.

Exercice 8

Montrer que X et Y deux vard sont indépendantes ssi pour toutes fonctions f, g mesurables bornées définies respectivement sur $X(\Omega)$ et $Y(\Omega)$, $\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]$.

Exercice 9

Soient deux vard X et Y telles qu'il existe φ , ψ fonctions mesurables telles que

$$\mathbb{P}(X = x \cap Y = y) = \varphi(x)\psi(y)$$

pour tous $x, y \in X(\Omega) \times Y(\Omega)$. Montrer que X et Y sont indépendantes et qu'il existe $a, b \in \mathbb{R}$ tels que

$$\mathbb{P}(X=x) = a\varphi(x) \text{ et } \mathbb{P}(X=x) = b\varphi(x)$$

pour tous $x, y \in X(\Omega) \times Y(\Omega)$.

Exercice 10 (Approximation de Binomiale par Poisson)

Soit $X_n \hookrightarrow \mathcal{B}(n, p_n)$ avec p_n une suite de réels strictement positifs telle que $np_n \to \lambda > 0$. Montrer que

$$\forall k \in \mathbb{N}, \, \mathbb{P}(X_n = k) \xrightarrow[n \to +\infty]{} \frac{\lambda^k}{k!} e^{-\lambda}.$$

Exercice 11 (Somme de lois de Poisson)

Soient $X_k \hookrightarrow \mathcal{P}(\lambda_k)$, $1 \leq k \leq n$ des vai. Montrer que $S_n = \sum_k X_k$ suit une loi de Poisson de paramètre $\lambda = \sum_k \lambda_k$. On pourra commencer par traiter le cas n = 2.

Exercice 12

Montrer que $\mathbb{E}(XY)$ munit l'espace vectoriel $L^2(\Omega, \mathcal{F}, \mathbb{P})$ d'un produit scalaire. En déduire l'inégalité de Cauchy-Schwarz. Etudier le cas d'égalité.

Exercice 13 (Un autre exo sur Zeta)

Soit s>1 et X une va réelle discrète à valeurs dans \mathbb{N}^* définie par

$$\mathbb{P}(X=n) = \frac{n^{-s}}{\zeta(s)}.$$

Pour $n \in \mathbb{N}^*$ A_n l'événement "X est divisible par n".

- 1. Montrer que cela définit bien une loi
- 2. Montrer les $(A_p)_{p\in\mathcal{P}}$ sont mutuellement indépendants.
- 3. En déduire une preuve probabiliste de

$$\prod_{n=1}^{+\infty} \left(1 - \frac{1}{p_i^s} \right) = \frac{1}{\zeta(s)}$$

4. Montrer que la probabilité qu'aucun carré (différent de 1) ne divise X est $\frac{1}{\zeta(2s)}$.